Skip to Main Content

BIOL 039 | Epigenetics

June 14, 2021 to June 18, 2021

Registration occurs on a first-come, first-served basis. The deadline for registration is one week before the first day of the course.  If you are unable to register before the deadline, please email: or call 301-496-7977 for space availability. 

NIH Fellows or NIH community members being sponsored by their lab and awaiting payment authorization can tentatively hold a seat using the “Reserve A Seat” option. FAES must receive payment within 7 business days after reserving a seat or 3 business days before the start of the workshop, which ever comes first. If payment is not received in this time frame, your reservation will be canceled.

Register Now

Program Description
Sequencing of the human genome was not the endpoint of our goal in understanding human genetics. The chemical modifications to DNA and histones, as well as the chemical interactions involving the manufacture of proteins represents a second level of human genetics termed epigenetics or epigenomics. Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Research has shown that epigenetic mechanisms provide an additional layer of transcriptional control that regulates how genes are expressed. Epigenetic abnormalities are associated with genetic disorders, cancer, autoimmune diseases, aging and pediatric syndromes, among others.

This course will address the basic principles of epigenetics, the role of epigenetic mechanisms in normal development and human disease, and the development of epigenetically-effective drugs. The objective of the program is to provide a solid foundation of information enabling participants to design experiments when returning to their own research lab. Furthermore, to provide a solid background in order to understand the literature in this rapidly growing field.

Participating instructors are active research faculties from neighboring institutes and universities who have been publishing in these areas for several years.


Lectures cover basic mechanism underlying DNA methylation, histone modification, chromatin organization, noncoding RNA, and gene repression. Moreover, a broad range of topics will be covered in epigenetic research including cancer, development, environmental health, and immunology. The lectures also provide the participant with practical information concerning current techniques in epigenetic research. For example, the application of ChIP-Seq, ATAC-Seq, CHARM, Illumina bead arrays, restriction enzyme analysis, bisulfite sequencing, and RNA interference are discussed, and context is provided via descriptions of experimental design, data analysis, and interpretation and validation of results.

In the virtual lab settings, we will teach chromatin extractions, immune precipitation, and quantitative ChIP-specific PCR, which represent a core foundation for current next-generation sequencing approaches (such as ChIP-Seq) to chromatin analysis.

The computational lab aims to provide an understanding of the bioinformatic approaches and computational methods used to analyze DNA methylation and chromatin data, and how to integrate this data with other data modalities, such as gene expression. Such approaches are relevant to the analysis of data from many cutting-edge technologies, and should prove useful for those interested in conducting a variety of epigenetic experiments and research projects.


Lecture and Laboratory Topics

• Intro to Chromatin Organization and DNA Modifications

• Gene Expression and Non-coding RNAs, including circular RNA

• Epitranscriptomics

• Epigenetic research in Plants and Marines, as well as Cancer, Development, and Environmental Health

• Methylation-specific PCR, Illumina Bead Arrays, DNA Hydroxymethylation, Pyrosequencing, Restriction

• Chromatin Immunoprecipitation, ChIP-based qRT-PCR, ChIP-Seq, Cut&Run, ATAC-Seq, HiC, DNase-Seq

• Virtual lab experience on chromatin extraction, immunoprecipitation, performance and analysis of ChIP-specific PCR

• Hands-on-experience on high-throughput data analysis and integration

Although no grades are given for Workshops, each participant will receive Continuing Education Units (CEUs) based on the number of contact hours. Upon completion of this 5-day program, each participant will receive 3.5 CEUs. Upon completion of each workshop, a certificate is issued.

General Training Rate

Discounted Training Rates
$1,345.00-NIH Community (Trainees, Contractors, Employees, Tenants working at one of the NIH campuses)      

$1,495.00-Academia, US Government, US Military

Technology Fee

Refund Policy
100% tuition refund for registrations cancelled 14 or more calendar days prior to the start of the workshop.

50% tuition refund for registrations cancelled between 4 to 13 calendar days prior to the start of the workshop.

No refund will be issued for registrations cancelled 3 calendar days or less prior to the start of the workshop.

All cancellations must be received in writing via email to Ms. Carline Coote at

Cancellations received after 4:00 pm (ET) on business days or received on non-business days are time marked for the following business day.

All refund payments will be processed by the start of the initial workshop.

Return to Workshops Calendar